
Technology Innovation Management Review January 2013

7www.timreview.ca

Code Forking, Governance, and Sustainability
in Open Source Software

Linus Nyman and Juho Lindman

Introduction

This article addresses the question of how the right to 
fork open source projects – to use the source code of an 
existing program to start a new, independent version – 
works as a governance mechanism to provide sustain-
ability in open source software. The concept of sustain-
ability is under debate, with numerous rubrics against 
which the sustainability of a product may be measured 
(e.g., Connelly, 2007: tinyurl.com/atjcgq3; Davison, 2001: 
tinyurl.com/aukl5ch; McManus, 1996: tinyurl.com/a5usfo3). 
Within the context of the current study, sustainability is 
defined as the possibility of an open source program to 
continue to serve the needs of its developers and users.

While code forking may lead to redundant independent 
efforts, it represents the single greatest tool available for 
guaranteeing sustainability in open source software. In 
this article, we examine code forking within open 
source initiatives and discuss the managerial implica-
tions of code forking. The article is structured as fol-

lows: first, we offer some background on code forking; 
second, we look at how code forking affects governance 
on the three levels mentioned; finally, we explain the 
relevance of these findings and their management im-
plications.

Background

Code forking has often been viewed in a negative light. 
At the core of this negative view is the continued use of 
a restrictive, and perhaps outdated, definition of the 
term forking. Until recently, the term fork was mainly 
used to describe a situation in which a developer com-
munity had split into competing camps, each continu-
ing work on their own, incompatible version of the 
software (see, for example, Raymond, 1999: 
tinyurl.com/3ald3; Fogel, 2006: tinyurl.com/3dx2py). Hence, 
the negative tone found in discussions of forking has 
been related to concerns regarding the hindered pro-
gress, wasted resources, and potential demise of one or 
both of the projects. In recent years, the term forking 

The right to fork open source code is at the core of open source licensing. All open source 
licenses grant the right to fork their code, that is to start a new development effort using an 
existing code as its base. Thus, code forking represents the single greatest tool available for 
guaranteeing sustainability in open source software. In addition to bolstering program sus-
tainability, code forking directly affects the governance of open source initiatives. Forking, 
and even the mere possibility of forking code, affects the governance and sustainability of 
open source initiatives on three distinct levels: software, community, and ecosystem. On 
the software level, the right to fork makes planned obsolescence, versioning, vendor lock-
in, end-of-support issues, and similar initiatives all but impossible to implement. On the 
community level, forking impacts both sustainability and governance through the power it 
grants the community to safeguard against unfavourable actions by corporations or pro-
ject leaders. On the business-ecosystem level forking can serve as a catalyst for innovation 
while simultaneously promoting better quality software through natural selection. Thus, 
forking helps keep open source initiatives relevant and presents opportunities for the de-
velopment and commercialization of current and abandoned programs.

The ability to fork code – a central freedom of open 
source software – is what keeps communities vibrant 
and companies honest.

Glyn Moody
Technology writer and journalist

“ ”

http://dx.doi.org/10.1080/13549830601183289
http://www.sunypress.edu/p-3372-technology-and-the-contested-me.aspx
http://dx.doi.org/10.1080/09644019608414247
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
http://producingoss.com/


Technology Innovation Management Review January 2013

8www.timreview.ca

Code Forking, Governance, and Sustainability in Open Source Software
Linus Nyman and Juho Lindman

has come to be used in a much broader context, encom-
passing all cases in which one takes an existing code 
base and implements it in a separate project (see, for in-
stance, GitHub: tinyurl.com/7uc94sk). In the context of this 
study, we adhere to this broader definition of forking.

While there are many reasons why projects are forked, 
the most common reason is the desire to modify the ori-
ginal program to better address a specific need (Nyman 
and Mikkonen, 2011; tinyurl.com/arntyur). Forks may also 
be planned, temporary divergences intended to test 
new ideas and features, with the intention of later integ-
rating effective improvements back into the original 
(Nyman and Mikkonen, 2011: tinyurl.com/arntyur; see also 
GitHub: tinyurl.com/7uc94sk). The right to fork code is 
built into the very definition of what it means to be an 
open source program. The third criteria of the Open 
Source Initiative’s (OSI; opensource.org/osd.html) definition 
of open source states that the license “must allow modi-
fications and derived works.” Similarly, the Free Soft-
ware Foundation’s Free Software Definition (FSD; 
gnu.org/philosophy/free-sw.html) states that users have the 
freedom to “run, copy, distribute, study, change and im-
prove the software.” All spinoff initiatives can be con-
sidered forks as they are “modified or derived” (OSI) or 
“copied, changed and improved”. The possibility of 
forking any project affects the governance and sustain-
ability of all open source programs.

Software is editable, interactive, reprogrammable, dis-
tributed, and open (Kallinikos et al., 2010; 
tinyurl.com/4zn6cun). These characteristics dictate that 
software is prone to being changed, repaired, and up-
dated rather than remaining fixed from the early stages 
of the design process. The openness combined with the 
granular composition of the software offer new ways of 
governance (Benkler, 2006; tinyurl.com/6ftot3). This gov-
ernance is not tied to over-appropriating a natural re-
source (Ostrom, 1991; tinyurl.com/b8rc2pu), but rather 
related to ways in which a group of developers, follow-
ing institutional rules, collectively produce a public 
good (Schweik et al., 2010; tinyurl.com/aqxy2jp).

Three Levels of Governance

1. Software level
The nature of the industry dictates that programs can-
not maintain a stable steady state for an extended peri-
od of time. They must continue to evolve in order to 
remain useful and relevant. Without continual adapta-
tion, a program will progressively become less satisfact-
ory (Lehman, 1980; tinyurl.com/b2mpkw3). Conversely, 
truly successful software is able to adapt and even out-

live the hardware for which it was originally written 
(Brooks, 1975; tinyurl.com/awg3rrw). Therefore, the ability 
to change and evolve is a key component of software 
sustainability. Although stagnation may be a precursor 
to obsolescence, obsolescence need not creep into a 
project over time; it is often a design feature.

Popularized in the 1950s by American industrial design-
er Brooks Stevens (The Economist, 2009; tinyurl.com/
ahws66g), the concept of planned obsolescence stands in 
stark contrast to the concept of sustainability. Stevens 
defined planned obsolescence as the act of instilling in 
the buyer “the desire to own something a little newer, a 
little better, a little sooner than is necessary” (Brooks 
Stevens’ biography; tinyurl.com/bbs8a3c). Considered “an 
engine of technological progress” by some (Fishman et 
al., 1993; tinyurl.com/bye2n5r), yet increasingly problemat-
ized in the business ethics literature (Guiltinan, 2009; 
tinyurl.com/alr2c92), planned obsolescence is part of every 
consumer’s life. Although contemporary software devel-
opment and distribution have characteristics that differ 
substantially from the industrial products of the 1950s, 
the revenue models of companies in the software mar-
ketplace often welcome elements such as system ver-
sioning, to encourage repurchases of a newer version of 
the same system, or vendor lock-ins that limit the cus-
tomer choice to certain providers of system or product 
(for a further review, see Combs, 2000; tinyurl.com/
aq2wl7h). Newer versions of programs may introduce 
compatibility problems with earlier operating systems 
or programs (e.g., lack of backwards compatibility in In-
ternet Explorer, Microsoft Office, or OS X’s OpenStep 
APIs). Some programs also introduce new file formats, 
which can cause compatibility issues with earlier ver-
sions of the program (e.g., docx vs. doc). Furthermore, 
end-of-life announcements and concerns over end-of-
support deadlines may encourage users to upgrade, re-
gardless of the real need to do so.

The right to fork code makes implementing such ele-
ments impracticable in open source. The right to im-
prove a program, the right to combine many programs, 
and the right to make a program compatible with other 
programs and versions are all fundamental rights that 
are built into the very definition of open source. Re-
search has shown these rights are often exercised 
(Fitzgerald, 2006; tinyurl.com/al995aj). The result of this 
constant collaborative improvement in open source 
systems is that any program with the support of the 
open source community can enjoy assured relevance 
rather than planned obsolescence. Furthermore, with 
renewed community interest, programs that have de-
cayed and fallen into disuse can be revived and up-

https://help.github.com/articles/fork-a-repo
http://www.igi-global.com/article/fork-not-fork/68147
http://www.igi-global.com/article/fork-not-fork/68147
https://help.github.com/articles/fork-a-repo
http://opensource.org/osd.html
http://www.gnu.org/philosophy/free-sw.html
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/3033/2564
http://www.benkler.org/Benkler_Wealth_Of_Networks.pdf
http://www.google.ca/books?id=4xg6oUobMz4C
http://firstmonday.org/article/view/1619/1534
http://dx.doi.org/10.1109/PROC.1980.11805
http://dl.acm.org/citation.cfm?id=207583
http://www.economist.com/node/13354332
http://www.brooksstevenshistory.com/brooks_bio.pdf
http://www.jstor.org/stable/2950597
http://dx.doi.org/10.1007/s10551-008-9907-9
http://dx.doi.org/10.1023/A:1007897212472
http://misq.org/the-transformation-of-open-source-software.html


Technology Innovation Management Review January 2013

9www.timreview.ca

Code Forking, Governance, and Sustainability in Open Source Software
Linus Nyman and Juho Lindman

dated by forking the code from the original program. In 
fact, this is a fairly common practice: of the almost 400 
forks studied by Nyman and Mikkonen (2011; 
tinyurl.com/arntyur), 7% involved the reviving of an aban-
doned project. As long as there is sufficient community 
interest in a project, forking can allow for constant im-
provement in software functionality.

2. Community level
The possibility to fork is central to the governance of 
any open source community. The shared ownership of 
open source projects allows anyone to fork a project at 
any time. Therefore, no one person or group has a “ma-
gical hold” over the project (Fogel, 2006; 
tinyurl.com/ahbh8nt). Since a fork involving a split of the 
community can hurt overall productivity, Fogel notes 
that the potential to fork a program is “the indispens-
able ingredient that binds developers together”.

One of the concerns among open source communities 
is what Lerner and Tirole (2002; tinyurl.com/bfmaxl4) call 
the hijacking of the code. Hijacking occurs when a com-
mercial vendor attempts to privatize a project’s source 
code. The 2008 acquisition of MySQL (mysql.com), an 
open source relational database management system, 
by Sun Microsystems and subsequent acquisition of 
Sun by Oracle is an example of a case involving com-
munity concern over potential hijacking. It had been ar-
gued that such a series of acquisitions would lead to the 
collapse of both MySQL and the open source move-
ment at large (Foremski, 2006; tinyurl.com/yesjhw7). Re-
sponding to such claims, Moody (2009; tinyurl.com/
cbrq7g) noted that, while open source companies can be 
bought, open source communities cannot. Forking 
provides the community that supports an open source 
project with a way to spin off their own version of the 
project in case of such an acquisition. Indeed, this is 
what happened in the case of MYSQL. The original 
MySQL developer, Michael (“Monty”) Widenius, forked 
the MySQL code and started a new version under a dif-
ferent name, MariaDB, due to concerns regarding the 
governance and future openness of the MySQL code 
(for details, see Widenius' blog [February 5, 2009: 
tinyurl.com/btr9bm6 and December 12, 2009: tinyurl.com/
ba58vpp] and press release [tinyurl.com/auvaxbn]).

Similarly, in 2010, community concerns regarding gov-
ernance led to a forking of the OpenOffice (OO; open
office.org) project. The Document Foundation, which in-
cluded a team of long-term contributors to OO, forked 
the OO code to begin LibreOffice (libreoffice.org). The 
spinoff project emphasized the importance of a “trans-
parent, collaborative, and inclusive” government (The 

Document Foundation; tinyurl.com/bzmw5p2). A recent 
analysis of the LibreOffice project indicates that this 
fork has resulted in a sustainable community with no 
signs of stagnation (Gamalielsson and Lundell, 2012; 
tinyurl.com/a9ev4hu). Given that forking ensures that any 
project can continue as long as there is sufficient com-
munity interest, we have previously described forking 
as the “invisible hand of sustainability” in open source 
software (Nyman et al., 2011; tinyurl.com/b8bzorg).

Commonly, forking occurs due to a community’s desire 
to create different functionality or focus the project in a 
new direction. Such forks are based on a difference in 
software requirements or focus, rather than a distrust 
of the project leaders. When they address disparate 
community needs, different versions can prosper.

In a traditional company, it is the management, headed 
by the CEO and board of directors, that controls the 
company and provides the impetus for continued de-
velopment. While the vision of the leadership is simil-
arly integral to the eventual success of any open source 
project, their continued control is more fragile and 
hinges upon their relationship with and responses to 
the community. Forking cannot be prevented by busi-
ness models or governance systems. The key lies in ap-
propriate resource allocation and careful community 
management. Managers must strike a delicate balance 
between providing a driving force while appeasing and 
unifying the community. (For an overview of open 
source governance models, see OSS Watch 
[tinyurl.com/bjqpnkn]; for discussion on building technical 
communities, see Skerrett, 2008: [timreview.ca/article/160]; 
for discussion on open source community manage-
ment, see Byron, 2009: [timreview.ca/article/258].)

3. Business-ecosystem level
Within the dynamic world of open source software, nat-
ural selection acts as a culling force, constantly choos-
ing only the fittest code to survive (Torvalds, 2001; 
tinyurl.com/aaxqux7). However, the right to fork means 
that any company can duplicate any competitor’s open 
source software distributions; thus, competitive advant-
age cannot depend on the quality of the code alone. 
However, it is worth stressing that possibility does not 
equal success. The right to fork a commercially success-
ful program with the intention of competing for the 
same customer base still leaves the would-be competit-
or with issues regarding trademarks, brand value and 
recognition, as well as the existing developer and user 
base of the original program. Even though forking al-
lows companies to compete with identical open source 
software, it is nevertheless cooperation that is con-

http://www.igi-global.com/article/fork-not-fork/68147
http://books.google.ca/books?id=0vbr7xvvzjgC
http://ssrn.com/abstract=313493
http://www.mysql.com/
http://www.siliconvalleywatcher.com/mt/archives/2006/02/reorganize_or_l.php
http://www.linuxjournal.com/content/who-owns-commercial-open-source-%E2%80%93-and-can-forks-work
http://monty-says.blogspot.fi/2009/12/help-saving-mysql.html
http://monty-says.blogspot.fi/2009/10/press-release-concerning-oraclesun.html
http://www.openoffice.org/
http://www.libreoffice.org/
http://www.documentfoundation.org/foundation/history/
http://dx.doi.org/10.1007/978-3-642-33442-9_3
http://tutopen.cs.tut.fi/sos11/papers/cr4.pdf
http://www.oss-watch.ac.uk/resources/governanceModels.xml
http://timreview.ca/article/160
http://timreview.ca/article/258
https://groups.google.com/forum/?fromgroups=#!msg/fa.linux.kernel/bzuK77VWNIA/mxwSsUpN8FIJ
http://monty-says.blogspot.fi/2009/02/time-to-move-on.html 
http://monty-says.blogspot.fi/2009/12/help-saving-mysql.html


Technology Innovation Management Review January 2013

10www.timreview.ca

Code Forking, Governance, and Sustainability in Open Source Software
Linus Nyman and Juho Lindman

sidered to be the key to corporate success (Skerrett, 
2011: timreview.ca/article/409; Muegge, 2011: timreview.ca/
article/495).

Open source software is free, but it is also increasingly 
developed and supported for commercial gains (Wheel-
er, 2009: timreview.ca/article/229). While the right to fork 
may seem to make for a harsh business environment, 
open source companies can and do thrive. With its bil-
lion-dollar revenue (tinyurl.com/b7py36u), Red Hat is one 
such example. While their revenue primarily comes from 
subscriptions and services related to their software (see 
Suehle’s [2012; timreview.ca/article/513] TIM Review Q&A 
for a more in-depth look at the secret of Red Hat’s suc-
cess), Red Hat’s programs themselves are largely based 
on forks of programs by other developers. This phe-
nomenon of combining forked programs is not unique 
to Red Hat: the hundreds of different Linux distributions 
(tinyurl.com/85r9o) are all made possible by the forking of 
existing products and repackaging them as a new release.

Forking lays the building blocks for innovators to intro-
duce new functionalities into the market, and the pleth-
ora of online forges have hundreds of thousands of 
programs available for forking and reuse in any new, 
creative way the user can imagine, allowing for the rap-
id adaptation to the needs of end users. Hence, the 
practice of forking allows for the development of a ro-
bust, responsive software ecosystem that is able to 
meet an abundance of demands (Nyman et al., 2012; 
tinyurl.com/acg3fp2).

The old adage, "one man’s trash is another man’s treas-
ure" is particularly salient in open source software de-
velopment. Soon after Nokia’s abandonment of the 
MeeGo project in 2011 (press release: tinyurl.com/ad5lh6b; 
MeeGo summary: tinyurl.com/9u4xrno), the Finnish com-
pany Jolla announced that it would create a business 
around its revival, made possible by forking the original 
code (press release: tinyurl.com/7bzbo9h). On July 16, 2012, 
Jolla announced a contract with D. Phone, one of the 
largest cell phone retailers in China, and on November 
21 they launched Sailfish OS (tinyurl.com/a4yot8h). 
However, one does not need to be an open source busi-
ness to benefit from the right to fork. Forking can also 
aid companies who choose to use an existing program, 
or develop it for personal use. The requirement in open 
source to share one’s source code is linked with distri-
bution, not modification, which means that one can 

fork a program and modify it for in-house use without 
having to supply the code to others. However, a work-
ing knowledge of licenses as well as license compatibil-
ity (when combining programs) is crucial before 
undertaking such an endeavour (for a discussion of li-
censes, see St. Laurent [2004; tinyurl.com/befxwvc], 
Välimäki [2005; tinyurl.com/ahljzwu], or Meeker [2008; 
tinyurl.com/am93qol] for a discussion of architectural 
design practices in the combining of licenses, see Ham-
mouda and colleagues [2010; tinyurl.com/bfp82mw].

A summary of the ways in which forking can affect gov-
ernance and help ensure sustainability is provided in 
Table 1.

Managerial Implications

Managers should consider the following implications of 
code forking:

• An abandoned project can become a business oppor-
tunity. 

• Neither business models nor governance systems can 
completely prevent forking. Thus, developer and com-
munity satisfaction is of key importance.

• A strong, vibrant community is a key issue to consider 
when implementing an open source program. When ac-
quiring systems, the potential of forking in open source 
software – in particular when coupled with a strong 
community – provides opportunities to avoid version-
ing and vendor lock-in to one provider of a product or 
system. However, while community is important, it is 
not the only factor to consider. For more on evaluating 
and selecting open source software for corporate use, 
see the May 2008 issue of TIM Review, including topical 
articles by Golden (2008; timreview.ca/article/145), von Rotz 
(2008; timreview.ca/article/147), and Semeteys (2008;
timreview.ca/article/146).

• There are thousands of open source programs already 
in existence, which can be forked. If a need for software 
arises and open source is an option, begin by analyzing 
what already exists on code repositories such as Source-
Forge (sourceforge.net) and GitHub (github.com). Keep in 
mind that it is distribution, not modification, that oblig-
ates the sharing of the source code. Be sure to read up 
on licenses first!

http://timreview.ca/article/409
http://timreview.ca/article/495
http://timreview.ca/article/495
http://timreview.ca/article/229
http://www.businesswire.com/news/home/20120328006414/en/Red-Hat-Reports-Fourth-Quarter-Fiscal-Year
http://timreview.ca/article/513
http://en.wikipedia.org/wiki/List_of_Linux_distributions
http://dx.doi.org/10.1007/978-3-642-33442-9_21
http://press.nokia.com/2011/02/11/nokia-outlines-new-strategy-introduces-new-leadership-operational-structure/
http://taskumuro.com/artikkelit/the-story-of-nokia-meego
http://www.intomobile.com/wp-content/uploads/2012/07/Jolla_press_release_07072012.pdf
http://www.engadget.com/2012/11/21/jolla-launches-sailfish-os/
http://www.amazon.ca/dp/0596005814/
http://lib.tkk.fi/Diss/2005/isbn9529187793/isbn9529187793.pdf
http://www.amazon.ca/dp/0470194952
http://dx.doi.org/10.1145/1930488.1930533
http://timreview.ca/article/145
http://timreview.ca/article/147
http://timreview.ca/article/146
http://sourceforge.net/
http://github.com/


Technology Innovation Management Review January 2013

11www.timreview.ca

Code Forking, Governance, and Sustainability in Open Source Software
Linus Nyman and Juho Lindman

Conclusion

Forking sits at the intersection of several different open 
source topics, such as software development, gov-
ernance, and company participation in communities 
and business ecosystems. In the interest of clarity, we 
have simplified the categorization of the multifaceted 
concept of forking. In actuality, there is overlap among 
the categories: a strong community offers better insur-
ance of sustainability of the software level, while better 
software can more easily attract a bigger community. 
Both a poorly handled community and an abandoned 
project can spawn a business ecosystem competitor.

The right to fork code is intrinsic to open source soft-
ware and is guaranteed by all open source licenses. This 
right to fork has a significant effect on governance and 
helps ensure the sustainability of open source software. 
We have analyzed the effect of forking on three differ-

ent levels: the software level, the community level, and 
the ecosystem level. On a software level, code forking 
serves as a governance mechanism for sustainability by 
offering a way to overcome planned obsolescence and 
decay, as well as versioning, lock-in, and related con-
cerns. On a community level, code forking ensures sus-
tainability by providing the community with an escape 
hatch: the right to start a new version of the program. 
Finally, on an ecosystem level, forking serves as a core 
component of natural selection and as a catalyst for in-
novation. Online forges offer a plethora of publically 
available programs that can serve as the building blocks 
of a new creation. Current projects can be forked, aban-
doned projects can be revived and commercialized, or 
programs can be combined in novel ways to better 
meet the needs of both the developers and end users. It 
is the right to fork that moulds the governance of open 
source projects and provides the dynamic vigour found 
in open source computing today.

Table 1. Forking and its effect on governance

http://www.igi-global.com/article/fork-not-fork/68147


Technology Innovation Management Review January 2013

12www.timreview.ca

Code Forking, Governance, and Sustainability in Open Source Software
Linus Nyman and Juho Lindman

About the Authors

Linus Nyman is a doctoral student at the Hanken 
School of Economics in Helsinki, Finland, where he 
studies code forking in open source software. When 
not researching, he can sometimes be found lectur-
ing on corporate strategy or open source software. 
Other areas of interest include freemium business 
models and MMORPGs (online gaming). Linus has a 
Master’s degree in economics from the Hanken 
School of Economics.

Juho Lindman is an Assistant Professor of Informa-
tion Systems Science at the Hanken School of Eco-
nomics in Helsinki, Finland. Juho defended his 
doctoral dissertation focusing on open source soft-
ware development organization at the Aalto Uni-
versity School of Economics in Helsinki. In the field 
of information systems, his current research is fo-
cused in the areas of open source software develop-
ment, open data, and organizational change.

Citation: Nyman, L. and J. Lindman. 2013. Code Forking, 
Governance, and Sustainability in Open Source Software. 
Technology Innovation Management Review. January 2013: 
7-12. 

http://creativecommons.org/licenses/by/3.0



