
Technology Innovation Management Review December 2015 (Volume 5, Issue 12)

56www.timreview.ca

TIM Lecture Series
When Are Software Systems Safe Enough?

Chris Hobbs

Overview

The TIM Lecture Series is hosted by the Technology
Innovation Management (TIM; timprogram.ca) program
at Carleton University in Ottawa, Canada. The lectures
provide a forum to promote the transfer of knowledge
between university research to technology company ex-
ecutives and entrepreneurs as well as research and de-
velopment personnel. Readers are encouraged to share
related insights or provide feedback on the presenta-
tion or the TIM Lecture Series, including recommenda-
tions of future speakers.

The seventh TIM lecture of 2015 was held at Carleton
University on October 29th and was presented by Chris
Hobbs, a Software Safety Consultant at QNX Software
Systems (qnx.com). The lecture covered the changing
nature of safety-critical software over the last 20 years,
including a brief discussion of the standards that are
directing development in the medical, industrial, and
automotive fields. Hobbs also demonstrated some of
the tools recommended in the safety standards and
which are used during design verification.

Summary

By an enormous margin, most of the computers active
today are embedded into devices and are invisible to
users. Increasingly these embedded devices are being
deployed in applications where injury to human life or
the environment can occur if a failure occurs. Examples
include embedded systems in cars, aircraft, nuclear
power station controllers, railway signals, railway brak-
ing systems, and medical devices.

In this TIM Lecture, Chris Hobbs described his recent
work with railway signalling systems, robots perform-
ing hip surgery, industrial robots working alongside hu-
mans, medical analyzers, undersea drill-heads, and
autonomous and semi-autonomous cars. The develop-
ment of these types of system places great stress on the
validation and verification not only of the product, but,
more importantly, its architecture and design.

Hobbs cautioned that, "A system cannot be safe. It is a
matter of whether it is safe enough." And, determining
whether a system is "safe enough" requires an under-
standing of both risk and safety, and the context in
which a particular system will be used. The Internation-
al Organization for Standardization (ISO, 2011) defines
risk as a "combination of the probability of occurrence
of harm and the severity of harm", whereas unreason-
able risk is "risk judged to be unacceptable in a certain
context". In contrast, safety is described as the "ab-
sence of unreasonable risk according to valid societal
moral concepts".

So, how can we test whether a particular system is safe
enough? The International Software Testing Standard–
ISO/IEC/IEEE 29119 (2013) – states that, due to the
complexity of systems and software, it is impossible to
test a system exhaustively; testing becomes a sampling
activity. Even dynamic testing is "not sufficient to
provide reasonable assurance that software will per-
form as intended".

In part, the goal of software testing is to assess the avail-
ability and reliability of a system. Availability asks,
"Does the system give an answer?", whereas reliability

We have an ethical duty to come out of our mathematical sandboxes
and take more social responsibility for the systems we build – even if
this means career threatening conflict with a powerful boss.
Knowledge is the traditional currency of engineering, but we must
also deal in belief. The techniques of persuasion must become part
of the engineering toolbox. If the safety integrity of a system is
compromised by a bad management decision, it is our duty to speak
truth to power and change belief systems. The alternative is to risk
enduring regret for the shortened lives of the people who put their
faith in our skills.

Les Chambers
Systems engineer and author

“ ”

http://timprogram.ca
http://qnx.com

Technology Innovation Management Review December 2015 (Volume 5, Issue 12)

57www.timreview.ca

TIM Lecture Series – When Are Software Systems Safe Enough?
Chris Hobbs

asks, "Is the answer correct?" Although both of these as-
pects are important, depending on the system and its
functional context, either availability or reliability
might be more important for safety. For example, it is
safer for some systems to determine that, if a reliable
answer cannot be given, then no answer should be giv-
en. However, in other contexts, even some degree of un-
reliable information may be safer than no information
at all. Unfortunately, when it comes to testing, there are
many more techniques for assessing availability than
reliability. Developers must carefully consider this bal-
ance and determine which aspect is more important for
the safety of their system – and make design decisions
accordingly.

Given that we cannot design completely safe systems,
we must somehow decide what is safe enough. Hobbs
described three methods commonly used to assess risk
and decide whether a given system is safe enough:

1. As low as reasonably practical (ALARP): society de-
termines what levels of risk are unacceptable and
broadly acceptable, and in between there is an area
where financial decisions (often based on the value
of a human life) will influence risk-mitigation efforts.

2. Globalement au moins aussi bon (GAMAB): a new sys-
tem must offer a global level of risk no worse than
that offered by an existing equivalent system.

3. Minimum endogenous mortality (MEM): risk is as-
sessed based on the underlying likelihood of death
by accident, and new systems must not add more
than a particular level of risk to that baseline
amount, which is country/market-dependent.

In any case, developing a software system to an accept-
able of safety does require careful attention to risk and
some additional work. Hobbs estimates that develop-
ment to a safety-critical standard requires only 10% ad-
ditional effort above a "professional development"
standard, but he notes that many companies are actu-
ally developing software to a much lower standard,
which makes the additional costs associated with devel-
oping safe software seem high. For companies already
used to developing commercial-grade software, devel-
oping safety-critical software does not require that
much extra effort.

However, aside from the additional costs in time and
development effort, there is also the certification pro-

cess, which is not easy. Lloyd and Reeve (2009) reported
on the certification attempts of 16 companies and found
that, at the time of sampling, only 25% of those attempts
that had reached an outcome resulted in successful cer-
tification: more than half of the companies failed simply
by not completing the certification process.

A key element of design for safety – and one that is re-
quired by safety standards – is the development of a
safety culture within development organizations. A
safety culture includes aspects such as accountability
for decisions related to functional safety, highest priorit-
ization given to safety, a proactive attitude towards
safety, processes that include checks and balances, de-
liberate allocation of required skilled resources, and fos-
tering and valuing intellectual diversity (ISO, 2011).

Hobbs highlighted that developers are currently facing
significant challenges in designing and implementing
these types of systems. In the remainder of the lecture,
he demonstrated development and testing tools, gave
an overview of some example standards from the auto-
mobile industry and how they are structured, and he
identified major areas where research is required, such
as tool integration, standards and tools for security, and
tools to help developers manage the competing de-
mands for performance, availability, reliability, security,
and safety.

In summary, the lecture focused on the following key
messages:

• Almost all of today’s computers are embedded devices.

• An increasing number of those devices are performing
safety-critical roles.

• The software for those devices needs to be dependable.

• We can no longer test software to ensure that it is work-
ing properly.

• There are many problems with embedded devices:
ephemeral and difficult-to-diagnose bugs, hardware sus-
ceptibility, and a lack of tools. And, these problems are
getting worse.

• Security is now an integral part of safety.

• There are international standards on the development
of safety-critical software.

Technology Innovation Management Review December 2015 (Volume 5, Issue 12)

58www.timreview.ca

Keywords: safety, risk, security, software systems, safety-critical systems,
standards, testing

About the Speaker

Chris Hobbs is a Software Safety Consultant at QNX
Software Systems in Ottawa, Canada. He was edu-
cated as a mathematical philosopher, but finding
few jobs available for mathematical philosophers,
fell enthusiastically into computer programming
where he has spent the last 40 years avoiding man-
agement positions and remaining at the leading
edge of software development. At QNX Software Sys-
tems, he is part of a team focussed on deploying
QNX's operating system into safety-critical systems.
He works on the safety certification of QNX's
products and spends a lot of time with QNX's cus-
tomers, helping them to design systems to meet spe-
cific safety requirements. He is the author of
Embedded Software Development for Safety-Critical
Systems and The Largest Number Smaller Than Five.

This report was written by Chris Hobbs and Chris McPhee.

Citation: Hobbs, C. 2015. TIM Lecture Series – When
Are Software Systems Safe Enough? Technology
Innovation Management Review, 5(12): 56–58.
http://timreview.ca/article/953

References

ISO. 2011. ISO 26262: Road Vehicles — Functional Safety. Geneva: In-
ternational Organization for Standardization (ISO).
https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-1:v1:en

ISO/IEC/IEEE. 2013. The International Software Testing Standard.
Geneva: International Organization for Standardization (ISO) / In-
ternational Electrotechnical Commission (IEC) / Institute of Elec-
trical and Electronics Engineers (IEEE).
http://www.softwaretestingstandard.org

Lloyd, M. H., & Reeve, P. J. 2009. IEC 61508 and IEC 61511 Assessments
– Some Lessons Learned. Paper presented at the 4th IET Interna-
tional Conference on Systems Safety. London: The Institute of En-
gineering and Technology (IET).
http://dx.doi.org/10.1049/cp.2009.1540

TIM Lecture Series – When Are Software Systems Safe Enough?
Chris Hobbs

http://creativecommons.org/licenses/by/3.0

