
Technology Innovation Management Review October 2011

13www.timreview.ca

Economics of Software Product
Development Collectives

Michael Weiss

Introduction

The traditional view of software development is that it 
occurs within a single company. While parts of the de-
velopment may be sourced from outside the company, 
the final product has been specified, and is owned in 
full, by the company. When a company develops mul-
tiple products in the same domain, it benefits from or-
ganizing its software development activity as a product 
line (http://sei.cmu.edu/productlines).

A product-line provides a platform (also known as a 
core asset base) shared by a set of related products that 
are developed by an organization. The shared platform 
identifies points of commonality and variation. 
Products are created on top of the platform by reusing 
its core assets, while reducing the effort that goes to-
wards developing assets that are unique to the product.

The motivation for a product line is reducing the cost of 
developing new products while increasing their quality 
and reducing the time to market. By taking a product 
line approach, a company can manage product di-

versity and reuse more systematically. In other words, 
products built using a product line approach will share 
a common base, which allows a company to manage 
customer-specific variations more systematically. 

This traditional view is being challenged by two recent 
developments: a transition from software product lines 
to software ecosystems (Bosch, 2009; http://tinyurl.com
/3gfr5lg) and a transition from software ecosystems to 
collectives. A transition from product lines to software 
ecosystems takes place when a product-line company 
makes its platform available to developers outside the 
company. These include internal developers (as in a 
product line), strategic partners with long-term rela-
tionships, undirected external developers, and inde-
pendent solution providers.

The transition from software ecosystems to collectives 
recently has created many new collectives, even though 
they often go by different names, including “ecosys-
tems”. Examples are the open source Eclipse project 
(http://eclipse.org) and the closed source Artop ecosys-
tem (http://www.artop.org). A collective is set up when 

Where software product development occurs is shifting from single companies to groups 
or collectives of companies. In this article, we retrace the evolution of how software 
product development is organized and then offer insights into the economic motivation 
for collectives, which will be relevant to companies considering joining a software product 
development collective. Building on the literature on software product line economics, we 
identify three factors affecting the economics of collectives (level of contribution, number 
of members, and diversity of use), and develop a model that links those factors to three 
economic outcomes (time, quality, and cost). This model can be used by potential 
members when deciding whether or not to join a collective.

Define very precisely what your competitive differentiators 
are for your customers or you’re going out of business. 
Focus all possible energies there, and acquire everything 
else from open source software, or help build it in open 
source software. Or in other words: pick your niche; co-
evolve the platform in collaboration with other actors in 
the ecosystem.

Mike Milinkovich
Executive Director, Eclipse

“ ”

http://www.sei.cmu.edu/productlines
http://www.janbosch.com/Jan_Bosch/Composition_files/SPLC09-SoftwareEcosystems-Accepted.pdf
http://www.eclipse.org/
http://www.artop.org/


Technology Innovation Management Review October 2011

14www.timreview.ca

Economics of Software Product Development Collectives
Michael Weiss

a group of organizations wants to achieve a goal they 
cannot achieve on their own. A collective can address 
common needs of its members, allowing them to focus 
on the differentiating features of their products. 

It is often observed that somewhere between 50% and 
90% of development effort is spent on creating software 
that does not differentiate a company from its competit-
ors (van der Linden, 2009: http://tinyurl.com/6ef7p22; 
Milinkovich, 2008:  http://tinyurl.com/6aguklw). Only 
the remainder differentiates a company from its com-
petitors. This observation has motivated companies to 
acquire the non-differentiating parts of their software 
stack elsewhere, for example, as COTS (http://wikipe-
dia.org/wiki/Commercial_off-the-shelf) or open source 
software. When such software is not available, or when 
a higher degree of control over the software is desired 
to enable more effective customization, organizations 
have joined efforts to create their own common soft-
ware stack in a collaborative effort, making the result 
available to each other, or even to anyone else who 
wishes to use it.

This article seeks to identify the factors that affect the 
economics of collectives and to create a model linking 
those factors to economic outcomes. It develops pro-
positions from case studies of collectives about how the 
composition of a collective affects the achievement of 
the business goals of their members. The propositions 
link three characteristics of collectives (level of contri-
bution, number of members, and diversity of use) to 
three variables used to model the economics of product 
lines (time, quality, and cost).

Collectives

A collective can achieve things that its individual mem-
bers cannot achieve on their own, as described in the 
April 2011 issue (http://timreview.ca/issue/2011/april) 
of this publication. For example, as a collective, a group 
of startups can deliver a complete solution to a custom-
er, whereas individually they are only able to deliver 
pieces of the solution, which the customer has to integ-
rate. Joining forces makes the group of startups much 
more competitive against large system integrators. Col-
lectives can also collaborate to address common needs, 
allowing their members to focus on the differentiating 
features of their products. The more members a collect-
ive has, the more its members are able to share the load 
of meeting common needs. However, such collabora-
tion is also fraught with problems, for example, the co-
ordination overhead that results from dependencies 
between subtasks. 

A key characteristic of collectives is that they are volun-
tary organizations. Membership in a collective is a func-
tion of how well the collective helps its members meet 
their business goals. 

As contributors to the collective, members gain access 
to the total value generated by the collective. Previous 
research has shown that, as long as the total value re-
ceived is higher than the cost of contribution, members 
benefit from joining (Baldwin and Clark, 2006;
http://tinyurl.com/3qygf9y). Conversely, existing mem-
bers of a collective are not interested in members who 
do not add value to the collective. Thus, collectives of-
ten impose conditions on membership such as asking 
members to commit resources.

Figure 1 summarizes the transitions from a single com-
pany to a collective model of developing software 
products. The transitions occur along two dimensions. 
The first transition is from an internal to an external 
activity, as the platform is made available to external de-
velopers. The second transition is from a hierarchical to 
a network type of governance. The locus of creation 
and evolution of the platform shifts from a single plat-
form owner to a network that collectively creates and 
owns the platform.

Case Study: Eclipse

In the research underlying this article, we studied sever-
al cases both from firsthand observation and the literat-
ure. From these cases, we identified factors that affect 
the economics of collectives and created a model that 
links those factors to economic outcomes. The model is 
described as a set of propositions or statements that 
suggest causal links between the factors and the eco-
nomic outcomes. A summary of each case was pre-
pared that described its purpose, governance structure, 
and software architecture. Factors and economic out-
comes were identified in an iterative manner. 

In this section, we describe one of our case studies in 
detail: the Eclipse project. Eclipse is an open source 
community focused on building an open software de-
velopment platform (Smith and Milinkovich, 2007;
http://timreview.ca/article/94). The Eclipse project was 
founded in 2001 as a spin-out of technology that IBM 
had acquired from Object Technology International. 
Initially, the Eclipse community was primarily driven 
by IBM and other software vendors. In 2004, with the 
creation of an independent, non-profit governance 
body – the Eclipse Foundation – IBM relinquished its 
control over the project and allowed other players, in-

http://www.cepis.org/upgrade/index.jsp?p=2132&n=2135
http://www.eclipse.org/community/training/webinars/081015_Ecosystems_Webinar.pdf
http://en.wikipedia.org/wiki/Commercial_off-the-shelf
http://timreview.ca/issue/2011/april
http://www.people.hbs.edu/cbaldwin/DR2/BaldwinArchPartAll.pdf
http://timreview.ca/article/94


Technology Innovation Management Review October 2011

15www.timreview.ca

cluding IBM's competitors, to become equal members 
of the community.

The Eclipse Foundation is responsible for the technical 
infrastructure, coordinating the development process, 
handling the intellectual property rights, and promot-
ing Eclipse and its wider ecosystem. The role of the Ec-
lipse Foundation is administrative; it does not set the 
direction of the project or develop code. The direction 
of the project is set by strategic members of the collect-
ive. To become a strategic member, a company has to 
pay a membership fee and commit resources to the de-
velopment of the platform. The Eclipse project is organ-
ized as a set of top-level projects with subprojects. 

Eclipse has a well-defined process for member engage-
ment, and project guidance is provided by three coun-
cils. The requirements council collects, reviews, and 
prioritizes incoming requirements. The planning coun-
cil manages the release train. The architecture council 
defines and evolves the architecture of the Eclipse plat-
form. Individual projects are overseen by project man-
agement committees. The councils are composed of 
strategic members and representatives of the project 
management committees. 

Eclipse is designed to be highly extensible. At its core is 
a minimal runtime that provides tools for extension 
management. All functionality of Eclipse (even "core" 
functionality such as basic user interface elements) is 
implemented in the form of plug-ins. Plug-ins are the 
basic distribution unit of functionality in Eclipse. A 
plug-in can declare extension points, which are points 
where the behavior of the plug-in can be extended by 
others. It also implements extensions to the extension 
points of existing plug-ins. Those extension points are 
not predefined by the Eclipse platform, but can be 
defined by each plug-in author.

Findings

From the analysis of the cases examined in this re-
search, three factors were identified as characteristics 
of collectives: level of contribution, number of mem-
bers, and diversity of use. Level of contribution refers to 
the amount of work contributed to the core asset base 
by a member of the collective. Contributions are not 
limited to code, but can include requirements, designs, 
test cases, and feedback. The number of members is 
the size of the collective. Diversity of use measures the 
range and variety of contexts of use for the platform.

Economics of Software Product Development Collectives
Michael Weiss

Figure 1. Evolution of software product development models



Technology Innovation Management Review October 2011

16www.timreview.ca

Figure 2 shows a model that links these factors to eco-
nomic outcomes that we developed as a result of ex-
amining the case studies. Traditional cost-benefit 
models of product lines only model the impact on cost, 
not other benefits such as time to market or quality. 
The three economic outcomes considered in this model 
are time, quality, and cost. Time is either time to mar-
ket or the coordination overhead. Quality refers to the 
quality of the core asset base or the quality of the 
product. Cost is either the cost for the organization of 
the collective, the cost to create the core asset base, the 
cost to reuse assets, or the cost to create a unique asset 
not based on the platform.

The level of contribution is not evenly distributed 
among members of a collective. Instead, as studies of 
open source projects show, a small number of mem-
bers account for a majority of the contributions (Crow-
ston et al., 2011; http://tinyurl.com/3nrntty). Some 
members may be in a better position to create a specific 
core asset, because the skills required are not generally 
available, or they may have a more urgent need than 

other members for a specific asset to be available in the 
asset base. Most Eclipse subprojects receive their 
primary input from a single company. This company 
has greater influence over which core assets a contained 
in the platform than companies that contribute less. 

Proposition 1: Time to market decreases with the level of 
contribution as a result of better alignment between con-
tributed assets and the contributor's needs.

In the literature on small groups, trust has been noted 
as a determinant of effective team collaboration (Crow-
ston et al., 2011; http://tinyurl.com/3nrntty). Success-
ful leaders make a strong contribution and hold a 
central position in the community. Projects run by lead-
ers who have demonstrated their technical skills and 
who have a record of past successes are generally more 
likely to succeed. Trust can be increased by developing 
key functionality early in a project to demonstrate that 
the project is doable and has merit. With the initial re-
lease of the Eclipse source code in 2001, IBM triggered 
contributions from other companies.

Economics of Software Product Development Collectives
Michael Weiss

Figure 2. Linking factors to economic outputs. The arrows between factors and economic outcomes are the proposi-
tions that suggest causal relationships between them. The numbers on the arrow refer to the propositions. For ex-
ample, the level of contribution influences time and cost.

http://floss-test.syr.edu/system/files/CrowstonFLOSSReviewPaperPreprint.pdf
http://floss-test.syr.edu/system/files/CrowstonFLOSSReviewPaperPreprint.pdf


Technology Innovation Management Review October 2011

17www.timreview.ca

Proposition 2: Coordination overhead decreases with 
the level of contribution as a result of the increase in 
trust it creates between the members.

Through their level of contribution, a member can en-
sure the core assets fit with their business goals. Mem-
bers who contribute the most to a specific asset can 
expect to benefit when reusing the asset. A study of 
open source development found that contributors ob-
tain private benefits from the development of shared as-
sets that are not available to "free riders" who only use 
the assets (von Hippel and von Krogh, 2003;
http://tinyurl.com/6e39qa3). These include learning, 
sense of ownership and control, and feedback from oth-
ers on the contributed code. Contributors are also in a 
better position to tailor their code to their individual 
needs, because the code that they contributed for gen-
eral use may not be a good fit with someone else's 
needs. Many commercial products (such as IBM's Web-
Sphere product) are built on top of the Eclipse plat-
form. When IBM released the initial version of Eclipse, 
they had a significant lead over others in using the plat-
form even though the code was open to anyone.

Proposition 3: The cost to reuse assets in the core asset 
base and the cost to develop unique assets both decrease 
with the level of contribution.

When members of a collective contribute to a core asset 
base, they develop a shared platform. The purpose of 
the shared platform is to provide non-differentiating 
functionality to members of the collective so that each 
member can focus on its differentiating features. A de-
cision on whether to include a contribution in the 
shared platform is made on the basis of how well the 
contribution is aligned with the goals of the other mem-
bers of the collective. If a contribution were only to be-
nefit a single member, then it would not be included in 
the platform. For example, the Eclipse Modeling Frame-
work provides modeling and code generation capabilit-
ies that are leveraged by tools such as Rational Rose. 
Tools based on the framework can interoperate be-
cause they share common representations.

Proposition 4: The time to market decreases with the 
number of members. Members can focus on the develop-
ment of value-added features. 

Each member added to a team introduces coordination 
overhead, which is time not spent productively towards 
achieving the task of the team. The capacity of team 
members to interact with one other in meaningful ways 

is also limited. Conversely, a smaller number of collab-
orators allows members to interact more frequently 
with each other. This creates stronger ties among the 
members and increases commitment and identifica-
tion with the collective and its goals. The effort to co-
ordinate activities can be controlled by restricting 
access, that is, strategically selecting members for spe-
cific interactions. In open source software projects, re-
stricting access to core members reduces the amount of 
coordination required when members collaborate on a 
section of the project. The Eclipse project is organized 
into top-level projects, each of which has multiple sub-
projects. Only a subset of project members is active in 
any specific subproject. 

Proposition 5: Coordination overhead increases with 
the number of members working on the same section of 
the core asset base.

A high level of quality in the core asset base attracts 
new members to the collective. Products built on top 
of a high quality base will also be of higher quality. In a 
collective of small companies, individual members do 
not have the resources to build a system to the level of 
quality provided by the platform. From proposition 2, 
it is also apparent that a collective needs to receive 
enough initial contributions in order to reach an ac-
ceptable level of quality that will attract more new 
members. A study of embedded systems companies us-
ing Linux showed that these companies were motiv-
ated to reveal their changes to Linux to receive 
technical support from other companies (Henkel, 2006;
http://tinyurl.com/3dbfl7v).

Proposition 6: The quality of the core asset base in-
creases with the number of members who provide feed-
back on the assets in the core asset base.

A collective approach to developing a core asset base is 
more efficient than for each member of the collective to 
develop a full software stack in isolation. Instead of cre-
ating their own versions of commodity features, mem-
bers can focus on developing features that differentiate 
them from each other. The effort for maintaining the 
software stack as it evolves is also significantly reduced. 
Changes in underlying technologies can be spread 
among members. If members have existing invest-
ments in their own software stacks, switching to a plat-
form developed by a collective may be expensive at 
first, but will pay off in the long term. Companies that 
build on the Eclipse Modeling Framework differentiate 
themselves through the value they offer to end users.

Economics of Software Product Development Collectives
Michael Weiss

http://web.mit.edu/evhippel/www/papers/Private-Collective%20Model%20OS.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.7953&rep=rep1&type=pdf


Technology Innovation Management Review October 2011

18www.timreview.ca

Proposition 7: The cost of contributing to the core asset 
base decreases with the number of members who provide 
resources.

Each time the core asset base is put to use in a new con-
text, new aspects of the base will be exercised. Each 
new context of use may uncover errors or omissions 
that had not been identified before. This increases the 
chance of correcting errors, thus increasing the quality 
of all products that depend on the asset base. For ex-
ample, each Eclipse subproject exposes the shared core 
components to new uses.

Proposition 8: The quality of the core asset base in-
creases with diversity of use. Each new context of use will 
further harden the asset base.

Diversity of use is driven by the diversity of needs of the 
members of the collective. At early stages of growth, the 
availability of multiple perspectives that come with di-
versity of use benefits a collective. Decisions about 
what functionality to include in the core asset base will 
be made from a broad understanding of product needs. 
At later stages, too much diversity may, in fact, hinder 
the evolution of the core asset base in a cohesive man-
ner. When initially released, the Eclipse project 
provided core components for a Java-centric develop-
ment environment. It subsequently grew in diversity to 
include components for tool integration, modeling, and 
web applications that could be applied across a range 
of domains. Today, Eclipse can perhaps be best charac-
terized as a collection of vertical solutions for specific 
domains. About one half of the Eclipse project pool 
today is technology specific. The diversity of Eclipse 
projects has increased significantly, and as a group, the 
projects are far less cohesive now.

Proposition 9: The cost of creating the core asset base 
first decreases, then increases with diversity of use. At 
low diversity of use, the collective benefits from a broad-
er range of perspectives. When diversity of use is high, 
the collective will appear less cohesive.

Conclusion

The focus of this article was on the shift in software 
product development from single companies to collect-
ives. The analysis revealed motivations for companies 
to join a collective by examining the economics of col-
lectives. The article also argued that development in 
collectives effectively amounts to the creation of a 

shared platform or product line. Different from tradi-
tional software products lines, which are managed by a 
single platform owner, these product lines are collect-
ively owned. Another important difference is that the 
members of a collective are typically small and do not 
have extensive experience in product line engineering. 
In a future article we will explore the notion of a minim-
al viable product line, asking how a company can ob-
tain some of the benefits of a product line approach 
without a full implementation of the approach.   

Even though we used the open source collective Eclipse 
as our example in this article, we have also found the 
same patterns with closed source collectives (i.e., those 
that do not share the results of their work with non-
members). Closed source collectives obtain the same 
types of benefits from collaboration as their open 
source cousins. Forming a collective is not a question of 
open or closed sourcing; it is a question of development 
models.

Acknowledgement
A version of this article was presented at the Interna-
tional Workshop on Quantitative Methods in Software 
Product Line Engineering (QMSPLE 2011; http://users.
dsic.upv.es/workshops/qmsple2011/).

Economics of Software Product Development Collectives
Michael Weiss

About the Author

Michael Weiss holds a faculty appointment in the 
Department of Systems and Computer Engineering 
at Carleton University, and he is a member of the 
Technology Innovation Management program. His 
research interests include open source ecosystems, 
mashups/Web 2.0, business process modeling, 
social network analysis, and product architecture 
and design. Michael has published on the evolution 
of open source communities, licensing of open 
services, and innovation in the mashup ecosystem.

Citation: Weiss, M. 2011. Economics of Software Product 
Development Collectives. Technology Innovation 
Management Review. October 2011: 13-18. 

http://users.dsic.upv.es/workshops/qmsple2011/
http://creativecommons.org/licenses/by/3.0



